Analysis of discrete least squares on multivariate polynomial spaces with evaluations at low-discrepancy point sets

نویسندگان

  • G. Migliorati
  • Fabio Nobile
چکیده

∗ Corresponding author. E-mail addresses: [email protected] (G. Migliorati), [email protected] (F. Nobile). http://dx.doi.org/10.1016/j.jco.2015.02.001 0885-064X/© 2015 Published by Elsevier Inc. 518 G. Migliorati, F. Nobile / Journal of Complexity 31 (2015) 517–542

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caratheodory-Tchakaloff Subsampling

We present a brief survey on the compression of discrete measures by Caratheodory-Tchakaloff Subsampling, its implementation by Linear or Quadratic Programming and the application to multivariate polynomial Least Squares. We also give an algorithm that computes the corresponding CaratheodoryTchakaloff (CATCH) points and weights for polynomial spaces on compact sets and manifolds in 2D and 3D. 2...

متن کامل

Convergence estimates in probability and in expectation for discrete least squares with noisy evaluations at random points

We study the accuracy of the discrete least-squares approximation on a finite dimensional space of a real-valued target function from noisy pointwise evaluations at independent random points distributed according to a given sampling probability measure. The convergence estimates are given in mean-square sense with respect to the sampling measure. The noise may be correlated with the location of...

متن کامل

Analysis of Discrete L2 Projection on Polynomial Spaces with Random Evaluations

We analyze the problem of approximating a multivariate function by discrete least-squares projection on a polynomial space starting from random, noise-free observations. An area of possible application of such technique is uncertainty quantification for computational models. We prove an optimal convergence estimate, up to a logarithmic factor, in the univariate case, when the observation points...

متن کامل

Discrete least-squares approximations over optimized downward closed polynomial spaces in arbitrary dimension

We analyze the accuracy of the discrete least-squares approximation of a function u in multivariate polynomial spaces PΛ := span{y 7→ y : ν ∈ Λ} with Λ ⊂ N0 over the domain Γ := [−1, 1], based on the sampling of this function at points y, . . . , y ∈ Γ. The samples are independently drawn according to a given probability density ρ belonging to the class of multivariate beta densities, which inc...

متن کامل

Good point sets and corresponding weights for bivariate discrete least squares approximation*

An algorithm is presented to compute good point sets and weights for discrete least squares polynomial approximation on a geometry Ω ⊂ R2. The criterion that is used is the minimisation of the Lebesgue constant of the corresponding least squares operator. In order to approximate the Lebesgue constant, we evaluate the Lebesgue function in a point set generated by a refinement method that is base...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Complexity

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2015